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Abstract. We show how reaction coordinate path lengths affect the relaxation efficiency of a complex
system. To this purpose, we consider the metric contributions to the transition rates. These metric contri-
butions contain information about the system’s change of geometry at the barrier crossing and, therefore,
are directly related, differentially, to the path lengths. The results of this work can enrich the accuracy
with which we describe how complex systems relax to preferential structures.

PACS. 82.20.-w Chemical kinetics and dynamics

There is, currently, considerable interest in how the to-
pographies and topologies of multidimensional potential
surfaces of polyatomic molecules, clusters and nanoscale
particles govern the dynamics and phaselike behavior of
these systems; for reviews, see [1–3] and the references
therein. As a result, a new manner of interpreting their
energy landscapes is emerging which enhances our un-
derstanding in this pressing issue. Despite the enormous
power available now to do computations and the many
methods for extracting useful information about these sur-
faces, the problem of relating potential surfaces of complex
systems to their relaxation is far from a complete solution.

For complex systems, development of better potential
functions still remains clearly a priority. We can say that,
at least, starting from available expressions for the inter-
action between and among the system constituents, accu-
rate potential energy surfaces (PES) may be constructed
for many systems. Finding minima and saddles on po-
tential surfaces has become a straightforward matter by
employing some of the most widely used algorithms or
combinations thereof [4–7]. The problem has shifted from
asking how to find minima efficiently to asking how to
find and describe the connections between the topogra-
phy and the dynamics on the surface. Statistical methods
[8–10], especially that based on the topographic diagnosis
procedure [8], achieved considerable success, carrying the
study of complex systems to the point where one can be-
gin to infer dynamics of flow on the surface from the gen-
eral characteristics of the topography. A serious shortcom-
ing of the available dynamical studies, however, has to be
pointed out: virtually, all of them describe the thermally
activated barrier crossing rate by the traditional transi-
tion state theory (TST) rate model which deals only with
the height of the barrier and the densities of initial and
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saddle states [11]. No information about the geometrical
structures of the initial and saddle sites enter into this ap-
proach. This simplification imposes a limit to the precision
with which we can characterize the relaxation of complex
systems, e.g. of how some systems relax preferentially to
one or only a very few geometrical structures from among
the vastly larger variety that the system might exhibit.
However, there are other ways to compensate for this lack
of information. It was shown, for example, that the topo-
graphical properties of the potential energy surface (PES)
determine the extent to which the system is either glass-
forming or structure-seeking [2,8,12]. In addition, qualita-
tive interpretations of the interplay between structure and
dynamics have been made of the path length distributions
between connected minima along the reaction coordinate
[12,13].

For a better understanding of dynamics, it is now use-
ful to investigate the relation between the variety of path
lengths between neighboring minima along the reaction
coordinate of a specific PES and the flow of probability
between those minima. We attempt in the following to
get more insight into this particular aspect by invoking a
generalization of transition-state theory (TST) to express
the transition rates on the PES [14]. To this end, we in-
clude the metric contributions to the transition rates and
demonstrate their influence on the flow along the reaction
coordinate paths. We work out a simple three-level system
with a model surface based on a “nearest-neighbor” con-
nection pattern and focus on the ability of the system to
find the global minimum under the assumption of unequal
path lengths between connected minima.

Let x denote the reaction coordinate of a complex sys-
tem with N degrees of freedom whose dynamics is gov-
erned by an appropriate potential surface. The reaction
coordinate x is a function of all the degrees of freedom
x = x (q1, ...qN ; p1, ...pN ), where qi stands for the ith
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configuration coordinate and pi for its momentum. In the
following, we restrict our considerations to a small region
of the PES containing two locally-stable states, Θ1 and
Θ2, for which the reaction coordinate takes the particu-
lar values x1 and x2 with the corresponding energy levels
E1 and E2, respectively. In general, these two domains of
attraction might be separated by barriers containing one
or possibly more saddle points, possible unstable limit cy-
cles, or even more complex unstable attractors, including
combinations thereof. For most of the following we shall
restrict our discussion of the theory to the situation in
which two adjacent attracting basins are separated by a
single, simple saddle of rank 1. In the present case, we as-
sume that between the local minima Θ1 and Θ2 there is a
transition state at x(1−2) ≡ xa.

Generally, the forward TST rate w1−2 is given by [15]

w1−2 =

〈
δ (x− xa)

.
x (a) θ

[ .
x (a)

]〉
〈θ (xa − x)〉 , (1)

where δ and θ are the usual δ- and step functions. Here,
the average 〈...〉 denotes an equilibrium average over the
canonical probability density. The integration over the
momenta is straightforward and leads to

w1−2 = (2πβ)−1/2 [δ (x− xa) |∇Q (x)|]
[θ (xa − x)]

, (2)

where |∇Q(x)|2 =
∑
i(∂x/∂Qi)

2 and Qi are the mass-
weighted coordinates (Qi = qim

1/2
i ). The brackets [...]

indicate an average over the coordinates only. Further
simplifications in (2) can be achieved by integrating over
the coordinates of the center-of-mass position R and
all orientations Ω relative to a reference configuration
of the system. This follows the coordinate transforming
(Q1, ..., QN ) → (R,Ω; f1...fm), where f are the internal
coordinates (in number, m = N − 6). The internal coor-
dinates allow us to describe forces acting in the system
in terms of the potential function U (f). For example, the
number of particles in the well [θ (xa − x)] can be written
after suitable integrations as

[θ (xa − x)] =
∫
df1...dfmJ (f) θ (x (f)) exp

(
−U (f)
kBT

)
.

(3)

J (f) is the Jacobian of the coordinate transformation (in-
tegrated over center-of-mass and orientation angle coordi-
nates) and comprises the determinant of the metric tensor
times the volume of the system and factors resulting from
those integrations over the orientational degrees of free-
dom.

In the low temperature limit (βU (f) � 1, with β =
1/kBT ), eq. (2) can be evaluated by a Gaussian steepest-
descent approximation. The procedure requires expanding
the effective potential Ueff (f) = U (f) − kBT lnJ (f) to
second order at the saddle point (a) and at the local min-
imum (Θ1). After some simple algebra, the final formula

for the TST forward rate can be given in the form

w1−2 '
∣∣M−1/2

∣∣
2π

(
Ja
J1

) ∏m
i=1 λ

(1)
i∏m−1

i=1 λ
(a)
i

exp (−βE1−a) . (4)

Note that in the case of multiple transitions states we have
to count each contribution separately and write the rate
as a sum over pathways [8]. The ' sign is used instead
of the equality sign because of terms of order O(1/βf)
compared to unity have been neglected in above. M is
the mass matrix and the indices (a) and (1) indicate that
the corresponding quantities are evaluated at the saddle
point and the local minimum 1, respectively. E1−a mea-
sures the barrier height for the forward transition. The λi
are the eigenvalues of the force constant matrix, that is the
covariant second derivatives of the energy. The Jacobians
J1,a in eq. (4) contain information about the volume, bond
lengths and orientations of the system at the local minima
Θ1 and the saddle point, respectively. Equivalently said,
the metric contributions J1,a are directly related to the
values of the reaction coordinate at these particular sites
the system is visiting in the evolution through the con-
figuration space. Under these circumstances, the above
contributions modify the rate constant by a multiplica-
tive factor. This factor is the ratio of the two Jacobians
corresponding to the atomic arrangements at the saddle
point and at the position of the initial well, respectively,
all taken in the same reference frame. Within the Gaus-
sian steepest-descent approximation for integrations in the
phase space, this Jacobian ratio can be taken constant. for
any set of coordinates employed. The backward rate w2−1

may be obtained straightforwardly by replacing J2 and
E2−a for J1 and E1−a, respectively.

In the following we shall apply the TST rate formula
to a simple landscape case in which the two higher-energy
states of local stability Θ1 and Θ2 are connected sequen-
tially to the global minimum, Θ3. The global minimum has
the energyE3 (E3 < E1,2) and lies at x3 along the reaction
coordinate. A barrier at x(2−3) ≡ xb separates the global
minimum from its nearest-neighbor attractor Θ2. All the
considerations regarding Θ1 and Θ2 apply equally to the
forward (w2−3) and backward (w3−2) transitions between
the attractors Θ2 and Θ3. These can be constructed by
using the parameters Jb, J2,3, λ(b,2,3)

i and E2−b,3−b.
The general procedure describing the dynamics on the

PES relies in practice on the explicit knowledge of a mas-
ter equation governing the time dependence for the single-
event probability Pi (xi, t) of the reaction coordinate. For
the PES described above, the system of master equations
has the form

∂P1

∂t
= w2−1P2 (x2)− w1−2P1 (x1)

∂P2

∂t
= − (w2−1 + w2−3)P2 (x2)

+w1−2P1 (x1) + w3−2P3 (x3)
∂P3

∂t
= w2−3P2 (x2)− w3−2P3 (x3) . (5)

The problem we address is determining the extent to
which the dynamics of the system is affected by the metric
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contributions J to the corresponding TST rates wi−j(
i, j = 1, 3

)
. To do so, we must solve the kinetic equa-

tions, with a set of initial conditions given. For simplic-
ity, let us assume that at the initial moment (t = 0) the
system is in the domain of attraction Θ1 with the prob-
ability P1 (t = 0) = 1. The evolution of the population
distribution is thus relaxation along the reaction coordi-
nate through the configuration space, starting with the
population all at x = x1.

Analytic solutions of eqs. (5) are available for this sim-
ple system:

P1 (t) = α

[
1 +

g1S6

2S5S2
φ

(
2 + χ

χ

ϕ

φ
e−ω1t − 2 + ψ

ψ
e−ω2t

)]
,

P2 (t) = αg1

[
1 +

S6

2S2

(
2 + χ

χ
e−ω1t − 2 + ψ

ψ
e−ω2t

)]
,

P3 (t) = αg1g3

[
1 +

1
2S2

[
(2 + χ) e−ω1t − (2 + ψ) e−ω2t

]]
,

(6)

which were obtained in terms of eigenvalues and
eigenvectors of the characteristic system of equations.
The (nontrivial) eigenvalues are given by ω1,2 =
w2−1

2 (S1 ± S2) with S1 = 1 + g1 + g2 + g3, S2 =√
(1 + g1 − g2 − g3)2 + 4g3, g1 = w1−2

w2−1
, g2 = w3−2

w2−1
and

g3 = w2−3
w2−1

. All the other constants entering eq. (7) are
given by χ = S4−S2, φ = S2+S3, ϕ = S2−S3, ψ = S4+S2

and α = S5
S6

[(
g1 + S3−S2

2

)
S4−S3
S6

+
(
g1 − S3−S2

S4−S2

)]−1

with

S3,4 = 1∓ g1 ± g2 + g3, S5 = S2
3 − S2

2 and S6 = S2
2 − S2

4 .
The energy levels corresponding to the minima Θ1, Θ2

and Θ3 of the simple potential energy surface employed
in the present study lie along a slope or funnel, in the se-
quence E1 > E2 > E3. Each transition state connecting
two adjacent minima lies an energy li above the nearest
uphill minimum. Therefore, one sets E2−a−E1−a = l1 > 0
and E3−b−E2−a = l2 > 0, respectively. We assume in our
first version of this model that the potential energy bar-
rier opposing the escape from the global minimum back
to Θ2 is higher than that opposing the escape from the
minimum Θ2 towards the minimum Θ1, (E3−b > E2−a).
We also assume that the energy barrier from Θ2 towards
the global minimum is energetically lower than that for
uphill escape E2−a, (E2−a −E2−b = l3 > 0). In our com-
putation λ(1−3) denote the vibrational frequencies of the
reaction coordinate in the corresponding minima and we
shall keep them at constant values. As for the mean vi-
brational frequency of the transition state, we make the
usual assumption [9], that its absolute value is the geomet-
ric mean of the vibrational frequencies of the two minima
it connects, λ(a) =

√
λ(1)λ(2) and λ(b) =

√
λ(2)λ(3), re-

spectively.
By using probability distributions Pi (i = 1, 2, 3) as de-

rived above, we have investigated the relaxation of this
“complex” system with various choices for reaction coordi-
nate paths. In simulating the distribution of path lengths
we specifically explore the relation between the Jacobian
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Fig. 1. Time evolution of the probability P3 (curves 1, 2 and
3) and P2 (curves 1′, 2′ and 3′) for three different sequences
of path lengths between connected minima. The initial pop-
ulation in the highest minimum was assumed equal to unity,
P1 (t = 0) = 1. For explanation, see the text.

J (f) and the reaction coordinate, as can be seen below.
The results are displayed in Fig. 1.

Going back to the purpose of the present paper, we
focus on the role the metric contribution plays in the re-
laxation behavior of the system and first assign to the
Jacobians J1, J2, J3, Ja and Jb the following sequence of
numbers J1:J2:J3 ≡ 1:2:3, Ja:Jb ≡ 4:5. Roughly, these
numbers should correspond to a distribution of path
lengths along the reaction coordinate with increasing step
sizes towards the global minimum. The pictorial corre-
spondence in nuclear configuration space is therefore char-
acterized by sizeable rearrangements of the system’s com-
ponents as it relaxes toward its ground state. The values of
the parameters l1−3 have been tuned to achieve rapid sat-
uration on a scale of 100. The time evolution of the prob-
ability P3 is displayed in Fig. 1 (see the curve labeled (1)).
The population of the ground state and the corresponding
probability P3 increase rapidly and soon reach a plateau.

We now modify the metric contributions to the relax-
ation rates by setting J1 ≡ J2 ≡ J3 ≡ AJa ≡ BJb = 1,
which corresponds to an equally spaced distribution of
minima along the reaction coordinate. All the other pa-
rameters remain at their original values. Fig. 1, curve 2,
shows that the accumulation in the global minimum is
much slower in this case. The time evolution of the proba-
bility P3 does not reach saturation on the same time scale.
This indicates that the backward rates of escape from do-
mains of local minima are higher for this second case than
in the first, and that the system spends considerably more
time now moving uphill on the PES. The geometric struc-
tures corresponding to minima Θ1 and Θ2 attract the
system at rates comparable to that of the ground state
potential well even though the latter is energetically more
favorable. This balance could be turned around if the num-
bers of pathways towards Θ1 and Θ2, respectively, were
large enough to compensate the energy gaps by entropic
contributions [8].
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The efficiency of relaxation towards the global mini-
mum can be reduced even more dramatically by inverting
the numbers in the sequence J1:J2:J3 from those assumed
in the first example. This becomes J1:J2:J3 ≡ 3:2:1, and
the pictorial correspondence of the PES may be that of a
steeper funnel with a wide step at the top, between the
minima Θ1 and Θ2 and a narrow one at the bottom, be-
tween the minima Θ2 and Θ3. (We assume Ja:Jb ≡ 1, for
the present case.) Fig. 1, curve 3, shows that the proba-
bility P3 of accumulation in the global minimum is even
slower than that of the second case. In turn, a narrow
barrier between the global minimum Θ3 and adjacent lo-
cal minimum Θ2 combined with a broader one between Θ2

and Θ3 should result in a longer survival of the system in
the well around energy level E2. This is demonstrated by
curve 3′ in Fig. 1 which shows that the accumulation in
the domain of attraction Θ2 is still rising over the entire
time scale for the above values of the metric contributions.
This behavior contrasts with the two previous situations;
see curves 1′ and 2′ in Fig. 1. There, after an initial in-
crease in population, the attractor Θ2 starts, more or less
suddenly, to depopulate.

In conclusion, we can say that the efficiency of
relaxation towards the global minimum can be much
affected by the metric contributions to the transition
rates. The metric contributions are directly related by
the Jacobians to the distribution of the differential path
lengths. Therefore these play, in concert with the barrier
heights, a non-negligible role in determining how we
classify the archetypal energy landscapes in terms of the
dynamics they determine [2,3,8,12]. In addition, we can
say that incorporating the metric contribution to the TST
rate is the appropriate way to combine the height of the
barrier and the densities of initial and saddle states with
the differential path length corresponding to the transi-
tion of the system between these specific stationary points.

The present approach allows the TST rate to be related
implicitly to the geometric structure changes in each min-
saddle-min transition of the system. We intend to use the
information so obtained to identify a way to enrich the
precision with which we can characterize the ability of
complex systems to relax, preferentially, to only a limited
number of geometrical structures from the vastly larger
variety that the system might exhibit.
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